Too perfect? Where are the fluctuations?

Gil Holder

Herschel (Spire)

- 100 sq deg with full overlap with SPT deep field (23h30,-55d)
- 250,350,500 um

Clustering of Galaxies:

Projected sky maps of large scale structure have ~1-10% fluctuations

- Radio and IR/submm sources presumably trace the large scale matter fluctuations
- Back of the envelope:
 - Power spectrum contribution: mean T² x projected clustering amplitude
 - Arcminute scales: few Mpc has clustering ~1 in 3D, divide by number of independent cells along line of sight => 1e-3

CMB Angular Power Spectrum

Angular Power Spectra at mm-wavelengths

- large angles dominated by CMB
- small scales dominated by emission from galaxies
 - combination of shot noise in galaxy number & intrinsic clustering from large scale structure

Galaxy clustering at mm/submm wavelengths

- cleanly measured at many frequencies
- consistent with ~10% rms fluctuations on scales of a few arcminutes

Multipole moment ℓ

Addison, Dunkley & Bond 2013

HerMES power spectra

arXiv: 1208.5049

Planck CIB Measurements

Clustering of Galaxies:

Projected sky maps of large scale structure have ~1-10% fluctuations

- Radio and IR/submm sources presumably trace the large scale matter fluctuations
- Back of the envelope:
 - Power spectrum contribution: mean T² x projected clustering amplitude
 - Arcminute scales: few Mpc has clustering ~1 in 3D, divide by number of independent cells along line of sight => 1e-3

Angular Power Spectra at mm-wavelengths

- large angles dominated by CMB
- small scales dominated by emission from galaxies
 - combination of shot noise in galaxy number & intrinsic clustering from large scale structure

CMB 20 years ago....

- possibly a peak, upper limits on small scales
- typical upper limits measured in 10s of uK

Bennett, Turner & White 1997

Upper limits ~2000

TABLE 8 Qflat ² =5/12 I(I+1)Cl/2π COMPARISON WITH PREVIOUS WORK Qflat ² =5/12 I(I+1)Cl/2π								
95% Confidence I								
Experiment	v (GHz)	Ω_{sky} (arcmin ²)	θ_c (arcmin)	$C_0^{1/2}/T_{ m CMB}$	$Q_{ m flat}$ μ K²			
SuZIE OVRO 40 m VLA ATCA BIMA	. 142 . 20 . 8.4 . 8.4 . 28.5	213 ~60 20 28 240	1.1 2.6 ~ 1.0 1.0 0.9	$2.1 \times 10^{-5} \\ 1.7 \times 10^{-5} \\ \dots \\ 1.6 \times 10^{-5} \\ 9.6 \times 10^{-6}$	 35.2 23.6 14.1			

NOTE.—Frequency, sky coverage, coherence angle, and 95% confidence limits on the variance and flat-band power from previous work and the BIMA results.

Holzapfel et al 2000

Upper limits ~2000

TABLE 8COMPARISON WITH PREVIOUS WORK $Q_{\text{flat}^2}=5/12 (l+1)C_l/2\pi$									
		-		95% Confid	lence Limits				
Experiment	v (GHz)	$\Omega_{ m sky}$ (arcmin ²)	θ_c (arcmin)	$C_0^{1/2}/T_{ m CMB}$	$Q_{ m flat}$ μ K²				
SuZIE OVRO 40 m	. 142 20	$213 \\ \sim 60$	1.1 2.6	2.1×10^{-5} 1.7×10^{-5}					
VLA	. 8.4	20	~1.0		35.2				
ATCA BIMA	. 8.4 . 28.5	28 240	1.0 0.9	1.6×10^{-5} 9.6×10^{-6}	23.6 14.1				

NOTE.—Frequency, sky coverage, coherence angle, and 95% confidence limits on the variance and flat-band power from previous work and the BIMA results.

Holzapfel et al 2000

Excess radio emission at low frequencies?

Low-frequency CMB/Radio Background Upper Limits

		95% confidence upper limits			
Frequency	$\theta('')$	dT/T_{cmb}	dT/T_{arcade}	dT/T_{excess}	
4.86 GHz	12	$8.5 imes 10^{-4}$	0.11	0.13	
Fomalont et al	18	1.2×10^{-4}	0.016	0.019	
(1988)	30	8×10^{-5}	0.011	0.013	
	60	$6 imes 10^{-5}$	0.008	0.009	
8.4 GHz	6	1.3×10^{-4}	0.070	0.082	
Partridge et al	10	7.9×10^{-5}	0.043	0.051	
(1997)	18	$4.8 imes 10^{-5}$	0.026	0.031	
	30	$3.5 imes 10^{-5}$	0.019	0.023	
	60	$2.0 imes 10^{-5}$	0.011	0.013	
	80	$2.1 imes 10^{-5}$	0.011	0.014	
$8.7~\mathrm{GHz}$	120	1.4×10^{-5}	0.0084	0.0099	
Subrahmanyan					
et al (2000)					

T-T_{cmb-}T_{counts}

T-T_{cmb}

If there is an excess, it is remarkably unclustered

- minimal assumption: unbiased tracer of <u>linear</u> (2-halo) fluctuations $C_{\ell}(\ell) = \int d\chi \frac{1}{\chi^2} (\frac{df}{d\chi})^2 P(\frac{\ell}{\chi}, \chi)$
- old searches for CMB anisotropy found no evidence for any fluctuations at radio wavelengths

If there is an excess, it is remarkably unclustered

- if not foreground contamination, must be either
 - extremely diffuse (no small scale structure on scales probed by VLA or ATCA)
 - at very high redshift (where intrinsic clustering amplitudes are lower)

Conclusions

- galaxies are clustered
 - presumably because they are tracing dark matter, which is clustered
- a background that is a superposition of a bunch of galaxies will show clustering
 - e.g., the cosmic infrared background shows clustering at the level of ~10% on scales of a few arcminutes
- the radio background on arc minute scales is smooth at the percent level
 - it probably isn't made up of a simple superposition of galaxies
 - unless: small-scale features are <u>smoothed out</u> or at <u>high redshift</u> so that the dark matter is relatively unclustered or coming from <u>rare</u> enough sources that the (small-area) radio CMB limits don't apply